Profile
05 Jul 2020 ArchiveProfile :p
TaeHwan Youn
Birth : 92.01.07
Loc : Dongdaemun-gu, Seoul, Republic of Korea
KeyWord
- Data_Science
- Data_Preprocess
- MachineLearning
- DeepLearning
from datetime import datetime
def calc_age(DOB) :
today = datetime.today()
return today.year - DOB.year - ((today.month, today.day) < (DOB.month, DOB.day))
# data setting
DOB = datetime(1992, 1, 7)
age = calc_age(DOB)
work_exprience = {'NGO_Director' : 2,
'Marketer' : 1,
'DataScientist' : 1.3}
skill = {'ML' : 5,
'DeepLearning' : 2,
'Analysis' : 4,
'Presentaion' : 3,
'Communication' : 4}
language = {'python' : 5,
'R' : 4,
'SQL' : 2}
df_vis_tmp = pd.DataFrame.from_dict(
work_exprience, orient='index'
).rename(columns={0:'year'})
plt.bar(df_vis_tmp.index, df_vis_tmp.year, color = ['cornflowerblue', 'lightseagreen', 'pink'])
# drow plot
import numpy as np
import matplotlib.pyplot as plt
def make_radar_plot(target_dict, target_color) :
label = list(target_dict.keys())
label = [*label, label[0]]
score = list(target_dict.values())
score = [*score, score[0]]
# theta
label_loc = np.linspace(start= 0, stop= 2* np.pi, num = len(label))
_ = plt.figure(figsize = (6, 6.))
ax = plt.subplot(polar = True)
_ = plt.xticks(label_loc, labels= label)
_ = ax.plot(label_loc, score, linestyle = 'dashed', color = target_color)
_ = ax.fill(label_loc, score, color = target_color, alpha = 0.3)
plt.show()
return
df_vis_tmp = pd.DataFrame.from_dict(
work_exprience, orient='index'
).rename(columns={0:'year'})
plt.bar(df_vis_tmp.index, df_vis_tmp.year, color = ['cornflowerblue', 'lightseagreen', 'pink'])
skill = {'ML' : 5,
'DeepLearning' : 2,
'Analysis' : 4,
'Presentaion' : 3,
'Communication' : 4}
make_radar_plot(target_dict = skill , target_color = 'skyblue')
language = {'python' : 5,
'R' : 4,
'SQL' : 2}
make_radar_plot(target_dict = language , target_color = 'violet')
“기억하기보다, 기록하기”